Introduction to Grid and Highthroughput Computing

Horst Wenske

Hawk@entropia.de

Overview

- Motivation for this Field
- General Introduction of Important Terms
- The Condor System
- The Globus Toolkit
- Condor-G

Motivation

- Climate scientists visualize, annotate, \& analyze terabyte simulation datasets
- 1,000 physicists worldwide pool resources for petaop analyses of petabytes of data
- A home user invokes architectural design functions at an application service provider
- An application service provider purchases cycles from compute cycle providers
- Or, I simply want to encode my videos faster :)

Terms in this Field

- Distributed Computing
- Cluster Computing
- High Performance Computing
- High Throughput Computing
- Grid Computing
- Scientific Computing - ...

The Condor System

- Developed by the University of Wisconsin - Madison
- Operational since 1986
- Manages more than 1300 CPUs at UW-Madison
- Software available free on the web
- Unix and NT/W2k/XP

What is Condor?

- Batchsystem for serial and parallel jobs - Condor Pool
- You can use it for:
- For normal Workstation PCs
- Cluster with compute nodes
- Support for a lot of platforms:
- Linux (2.0.x, 2.2.x, 2.4.x) - Intel x86
- Windows (NT 4.0, 2000, XP?)
- Solaris (2.5.1, 2.6, 2.7, 8) - Sparc
- HP Unix 10.20 - PA RISC
- Digital Unix 4.0 - Alpha
- Irix 6.5-SGI Mips
- Open Source License - Condor Public License

Features of Condor

- Relatively easy to install
- Flexible to configurate
- A login account on other workstations is not necessary
- Global filesystem possible (e.g. NFS) but not necessary
- Mixed architectures: Automatic selection of the appropriate binary
- Jobs can run in different Condor Universes (standard, vanilla, ...)
- PVM and MPI (MPICH) supported
- You don't have to change the source
- Checkpointing and Job Migration
- Flexible Resource Matching through ClassAds
- Version for Grid Computing with the Globus Toolkit - Condor-G
- Linking of different Condor Pools is possible - Condor Flocking

Condor Universes (1)

- Standard (default)
- Checkpoint and Restart (same architecture)
- Remote System Calls (job seems to run on the submitter machine)
- New Linking of the program is necessary
- I/O files are transferred
- Vanilla
- Not new linked programs, shell scripts
- No Checkpointing and Restart, no Remote System Calls
- You need for data files a global filesystem

Condor Universes (2)

- PVM
- Dynamical management of machines via Condor
- MPI
- Only dedicated nodes - Jobs run without interruption
- Java
- Java jobs run on "all" platforms
- I/O files are automatically transferred
- Globus (Condor-G)
- Condor is working together with the Globus Toolkit

Grid Computing - Main Ideas

- Computing power is EVERYWHERE, let us make it usable by EVERYBODY.
- Computing power should be a resource like electric current.
I don't have to know where it comes from. I can have as much as I "want".

The Grid Problem

- Flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resource
From "The Anatomy of the Grid: Enabling Scalable Virtual Organizations"
- Enable communities ("virtual organizations") to share geographically distributed resources as they pursue common goals -- assuming the absence of...
- central location,
- central control,
- omniscience,
- existing trust relationships.

Elements of the Problem

- Resource sharing
- Computers, storage, sensors, networks, ...
- Sharing always conditional: issues of trust, policy, negotiation, payment, ...
- Coordinated problem solving
- Beyond client-server: distributed data analysis, computation, collaboration, ...
- Dynamic, multi-institutional virtual orgs
- Community overlays on classic org structures
- Large or small, static or dynamic

Why Now?

- Moore's law improvements in computing produce highly functional endsystems
- The Internet and wireless provide universal connectivity
- Changing modes of working and problem solving emphasize teamwork, computation
- Network exponentials produce dramatic changes in geometry and geography

Network Exponentials

- Network vs. computer performance
- Computer speed doubles every 18 months
- Network speed doubles every 9 months
- 1986 to 2000
- Computers: x 500
- Networks: x 340,000
- 2001 to 2010
- Computers: x 60
- Networks: x 4000

The Globus Project

- Close collaboration with real Grid projects in science and industry
- Development and promotion of standard Grid protocols to enable interoperability and shared infrastructure
- Development and promotion of standard Grid software APIs and SDKs to enable portability and code sharing
- The Globus Toolkit ${ }^{\mathrm{TM}}$: Open source, reference software base for building grid infrastructure and applications
- Global Grid Forum: Development of standard protocols and APIs for Grid computing

Globus Toolkit ${ }^{\text {TM }}$

- A software toolkit addressing key technical problems in the development of Grid enabled tools, services, and applications
- Offer a modular "bag of technologies"
- Enable incremental development of grid-enabled tools and applications
- Implement standard Grid protocols and APIs
- Make available under liberal open source license

General Approach

- Define Grid protocols \& APIs
- Protocol-mediated access to remote resources
- Integrate and extend existing standards
- "On the Grid" = speak "Intergrid" protocols
- Develop a reference implementation
- Open source Globus Toolkit
- Client and server SDKs, services, tools, etc.
- Grid-enable wide variety of tools
- Globus Toolkit, FTP, SSH, Condor, SRB, MPI, ...
- Learn through deployment and applications

Four Key Protocols

- The Globus Toolkit ${ }^{\text {TM }}$ centers around four key protocols
- Connectivity layer:
- Security: Grid Security Infrastructure (GSI)
- Resource layer:
- Resource Management: Grid Resource Allocation Management (GRAM)
- Information Services: Grid Resource Information Protocol (GRIP)
- Data Transfer: Grid File Transfer Protocol (GridFTP)

Condor-G

Layered over Globus as "personal batch system: Job Submission Machine Job Execution Site

References

- Slides from Dr. Rudolf Lohner (thanks for further support)
- http://www.cs.wisc.edu/condor
- http://www.globus.org
- http://www.globus.org/training/

