KIT

Karlsruhe Institute of Technology

Deferred Shading & Screen Space Effects

State of the Art Rendering Techniques used in the 3D Games Industry
Sebastian Lehmann | 11. Februar 2014

FREESTYLE PROJECT — GRAPHICS PROGRAMM — CHAIR OF COMPUTER GRAPHICS - WINTER TERM 2013 /2014

Real-time Local Reflections

Screen-Space Ambient Occlusion

KIT - University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholiz Association

u]
8
I
i
i

http://www.kit.edu

Deferred Shading — Motivation AIT

Rendering a Complex Scene
Render time depends on:
® Number of objects N (scene complexity)
@ Number of lights L
® Number of screen fragments R (resolution)

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 2/23

Deferred Shading — Motivation AIT

Rendering a Complex Scene
Render time depends on:
® Number of objects N (scene complexity)
@ Number of lights L
® Number of screen fragments R (resolution)

Trend: increasing!

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 2/23

Deferred Shading — Motivation AIT

Conventional Rendering Method

for each object

a for each fragment
a for each light
m compute lighting

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 3/23

Deferred Shading — Motivation AIT

Conventional Rendering Method

for each object

a for each fragment
a for each light
m compute lighting

= requires time O(N - L- R)
Not reasonable in modern games

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 3/23

Deferred Shading — Motivation IT

Deferred Shading: Two Passes

for each object
a for each fragment
m store surface material properties in offscreen buffer

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 4/23

Deferred Shading — Motivation

Deferred Shading: Two Passes

for each object
a for each fragment
m store surface material properties in offscreen buffer
for each light
a for each fragment
a fetch surface material properties from offscreen buffer

a compute lighting
m add to screen color

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014

4/23

Deferred Shading — Motivation AIT

Deferred Shading: Two Passes

for each object
a for each fragment
m store surface material properties in offscreen buffer
for each light
a for each fragment
a fetch surface material properties from offscreen buffer

a compute lighting
m add to screen color

= requires time O((N + L) - R)

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014

4/23

Deferred Shading — Rendering Pipeline ﬂ(“

Single Render Pass

l Position }7*)‘ Transformation }—)
For each light:

Mode] Screen

(e.g. Phong)

Diffuse Specular | [Specular
Color Color Exponent

(Conventional method for comparison)

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 5/23

Deferred Shading — Rendering Pipeline AT

Karlsruhe Intitute of Technology

Geometry Pass G-Buffer Lighting Pass
(implicit) 1
l Position }—*ﬁ Transformation F*ﬂ Depth I
l Normal }—*ﬂ Transformation %*ﬁ View-Space Normal}
Sheculy }——»{ Specular Color }
Specilay Specular Exponent |
Exponent P P [

Lighting
Model

Screen

(e.g. Phong)

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 5/23

Deferred Shading — Demo ﬂ(“

Demo

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 6/23

Deferred Shading — Translucent Objects KIT

Problem: Translucent objects

a User sees multiple objects at same pixel
a Need to evaluate lighting model multiple times
a G-Buffer can’t store this information

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 7/23

Deferred Shading — Translucent Objects KIT

Problem: Translucent objects

a User sees multiple objects at same pixel
a Need to evaluate lighting model multiple times
a G-Buffer can’t store this information

Solution: Render them separately

Two methods:

a Multiple Layers: render each layer with Deferred Shading
(Complex and costly)

w Forward Shading: render these objects using conventional method
(But restrict the set of lights!) My choice

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 7/23

Deferred Shading — Rendering Pipeline

Lighting Pass

Geometry Pass G-Buffer
(implicit)
l Position }—*ﬁ Transformation %—»{ Depth

[Cvoma }—

I

Transformation

%

—»{ View-Space Normal

]
|
]
|

Diffuse
Color

4>< Diffuse Color I

Lighting
Model

AT

Karlsruhe Institute of Technology.

Specular
Color

}7

‘>{ Specular Color

(e.g. Phong)

Specular
Exponent

}7

]
|
—»{ Specular Exponent }

Sebastian Lehmann — Deferred Shading & Screen Space Effects

11. Februar 2014

Screen

8/23

Deferred Shading — Rendering Pipeline

gpeaue : Lighting Pass
Objects ry G-Buffer g 9
implicit)
= K e
l Normal } } T } {View-SpaceNormal}
Lighting
(e.g. Phong)
si’ce:lg:f' }7‘% Specular Color }
Sk Specular Exponent |
Exponent P 5 |

Translucent

Screen

Karlsruhe Intitute of Technology

Objects Tranclucent Objects: Forward Shading Pass
= B |
For each light:
l Normal }—*ﬁ u } Lighting
Model
(e.g. Phong)
Diffuse Specular | [Specular
Color Color Exponent
=] =3 = =

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014

8/23

Deferred Shading — Demo ﬂ(“

Demo

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 9/23

Ambient Occlusion — Motivation AIT

Ambient lllumination

a Indirect light (“bounce”) also illuminates the scene

@ Usually: Add constant illumination (~ 5...10 %) everywhere
(But unrealistic => need to reduce at occluded points)

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 10/23

Ambient Occlusion — Motivation AIT

Ambient lllumination

a Indirect light (“bounce”) also illuminates the scene

@ Usually: Add constant illumination (~ 5...10 %) everywhere
(But unrealistic => need to reduce at occluded points)

Ambient Occlusion

® Do not add the same global illumination everywhere
(Have another factor influencing global illumination)

m Compute factor depending on local environment
(“How much light can reach this point?”)

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014

10/23

Ambient Occlusion — Example

Starcraft 2

IT

ruhe Institute of Technology.

Ambient Occlusion Disabled

Ambient Occlusion Enabled

Sebastian Lehmann — Deferred Shading & Screen Space Effects

11. Februar 2014

11/23

Ambient Occlusion — Techniques &K“

Per-Object Ambient Occlusion
a Precompute occlusion map (texture) per object
(Assumes static object mesh)
a Cheap technique

a But no inter-object ambient occlusion, bad for highly dynamic scenes
(But for some games almost perfect, e.g. RTS)

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 12/23

Ambient Occlusion — Techniques &K“

Per-Object Ambient Occlusion
a Precompute occlusion map (texture) per object
(Assumes static object mesh)
a Cheap technique

a But no inter-object ambient occlusion, bad for highly dynamic scenes
(But for some games almost perfect, e.g. RTS)

Screen-Space Ambient Occlusion (SSAO)
m Approximate “reachability” per pixel using rendered image

a Used in almost all modern games
(or variations of SSAO)

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 12/23

Ambient Occlusion — SSAO ﬂ(“

Idea

a For each pixel, cast rays to look for occlusions
m The more rays hit objects, the less light comes in
a Use depth buffer

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 13/23

Ambient Occlusion — SSAO ﬂ(“

Idea

a For each pixel, cast rays to look for occlusions
m The more rays hit objects, the less light comes in
a Use depth buffer

~5 o7 Depth
Buffer

Problems

o
o /'Current Frag.

m Many rays per pixel are inefficient
(Use only few and blur the result, but how?)

m Objects in the front: Are they occluding the scene in the back?
(Information missing)

a What about the screen border?
(Information missing)

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 13/23

Ambient Occlusion — SSAO — Generating Rays &‘(IT

How many rays, in which direction?

a Rays with random direction within hemisphere (2 to 8 per pixel)

m Different set of directions for each pixel
(Repeating pattern of size 4x4 to 8x8)

a Post-process: blur with filter radius = pattern size
(Effectively kills noise almost entirely)

a Per ray: only 2 or 3 marching steps are enough, random initial offset

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 14/23

Ambient Occlusion — SSAO — Generating Rays &‘(IT

How many rays, in which direction?

a Rays with random direction within hemisphere (2 to 8 per pixel)

m Different set of directions for each pixel
(Repeating pattern of size 4x4 to 8x8)

a Post-process: blur with filter radius = pattern size
(Effectively kills noise almost entirely)

a Per ray: only 2 or 3 marching steps are enough, random initial offset

Wait... rand () on the GPU?

a Precompute noise texture

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 14/23

Ambient Occlusion — SSAO - Problems Q(IT
Objects in the front

a They hide the scene behind them
a Information missing!

@ Range check: If ray hits an object too far in the front = ignore ray
a Configurable threshold

This Buddah is flying in
front of the background:

without range check

with range check

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 15/23

Ambient Occlusion — SSAO - Problems &‘(lT

Screen border
a Information missing!
(Unless we rendered into enlarged framebuffer)
w Border check: If ray shoots outside screen = ignore ray

a Effectively fades out the effect at screen borders
(Almost unnoticable)

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 16/23

Ambient Occlusion — SSAO - Problems ﬂ(“

Screen border
a Information missing!
(Unless we rendered into enlarged framebuffer)
w Border check: If ray shoots outside screen = ignore ray
a Effectively fades out the effect at screen borders

(Almost unnoticable) 4 f ,,f/
B ‘ ‘w ‘r
Blurring might remove details [F B b
m Don't blur over edges / stay within same surface - ¥
a Compare depth and normal at source and target L] r ‘I l‘ T
I

a Known as geometry-aware / bilateral filter Example of bad blur!

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 16/23

Ambient Occlusion — SSAO — Rendering Pipeline A

Karlsruhe Intitute of Technology

el Geometry Pass | :
Objects Geometry Pass G-Buffer Lighting Pass
= B B LN

=1 B \ {

| I { View-Space Normal }
Lighting
(e.g. Phong)
Specular 1
Color }7*% Specular Color |
e Specular Exponent 1
Exponent I

Screen

Translucent " q
Objects Tranclucent Objects: Forward Shading Pass

[rosion | = }
l . }7 | For each light:
lormal 4){

| Lighting
Model

Specular
Exponent

(e.g. Phong)

Diffuse
Color.

Specular
Color

u]
8]
I
i
i

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 17/23

Ambient Occlusion — SSAO — Rendering Pipeline ﬂ(

Karlsruhe Intitute of Technology

b -
Objects Y G-Buffer L]
impli
Position | []] (implicit) | p— |
| | I i |
l Normal }——»{ Transformation H"{ iew-Sp Narmal}
Lighting
(e.g. Phong)
o }7*){ Specular Color }
e] Specutar Exporent |
A
SSAO Pass
3| Compute SSAO

Translucent = =
Objects Tranclucent Objects: Forward Shading Pass

creen

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 17/23

Ambient Occlusion — SSAO — Demo ﬂ(“

Demo

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 18/23

Local Reflections ﬂ(“

How can we render (non-recursive) reflections?

a Planar mirrors: duplicate scene
(Doesn’t scale. OK for single mirror like ocean.)

a Single curved reflectors: cube maps
(Doesn'’t scale either. Cool for cars.)

m Complex scene / general: screen space
(Scales well, but information missing. Good for short distance (“local”) reflections)

g

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 19/23

Local Reflections in Screen Space &K“
Idea

m Again ray casting, now along reflection vector (~ 8 to 60 steps)
® When intersection found =- duplicate that color
m Non-perfect reflectors: add random jitter to ray direction

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 20/23

Local Reflections in Screen Space ﬂ(“

Idea

m Again ray casting, now along reflection vector (~ 8 to 60 steps)
® When intersection found =- duplicate that color
m Non-perfect reflectors: add random jitter to ray direction

Problems, problems, problems ...
m What if (real) intersection is behind occluder or outside screen?

(Information missing)

a Too large step size: we miss the intersection!
(Did we only miss it, or is something in front?)

a What if the intersection is a back face (and thus invisible)?
(Information missing)

a Should we reflect the whole color or only diffuse part?
(Remember: specular lighting is view-dependent!)

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 20/23

Local Reflections in Screen Space &‘(“

Finding the “best” intersection

a Proceed ray casting until we find pixel with lower depth
m Cancel ray casting after k steps or when outside of the screen

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 21/23

Local Reflections in Screen Space

Finding the “best” intersection

a Proceed ray casting until we find pixel with lower depth
m Cancel ray casting after k steps or when outside of the screen

a For each sample which has lower depth and is front face:

a Remember the sample with smallest depth error
a If depth way too small (configurable tolerance):

m Assume there is an occluder
a Optional: “recover” from small ocluders by counting these cases

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 21/23

Local Reflections in Screen Space

Finding the “best” intersection

a Proceed ray casting until we find pixel with lower depth
m Cancel ray casting after k steps or when outside of the screen

a For each sample which has lower depth and is front face:

a Remember the sample with smallest depth error
a If depth way too small (configurable tolerance):

m Assume there is an occluder
a Optional: “recover” from small ocluders by counting these cases

a Final result is sample with smallest depth error, but

a fade out effect when error too large
m fade out effect when almost at screen border
a fade out effect when almost a back face

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014

21/23

Local Reflections in SS — Rendering Pipeline T

Karlsruhe Intitute of Technology

Opaque : Lighting Pass
Objects ry G-Buffer g 9
implicit)
[roson | K LI
| | | 1 [
Normal T View-Space Normal
} 1 ; { }
Lighting
Diffuse %—»{ Diffuse Color | tods)
(e.g. Phong)
ST }—*ﬁ Specular Color }
Shecuter |—+——>{ specular exponent |
L

SSAO Pass

3 Compute SSAO

Translucent
Objects Tranclucent Objects: Forward Shading Pass

N Screen
= = E E E
Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 22/23

Local Reflections in SS — Rendering Pipeline €

Karlsruhe Intitute of Technology

Opaaue igh
c ieometry Pass - Lighting Pass
Objects Ty G-Buffer g 9
l Position }——»{ Transformation }——»{ Depth }
| —»| Diffuse Lighting —>
l Normal }——»{ Transformation }——»{ View-Space Normal |
Lighting @
- pose
Diffuse }——»{ Diffuse Color | (L= &
(e.g. Phong) Post-Process
SEEY }——»{ Specular Color } _ |spectiailichting —>
Specillan ey Bt |
Exponent |
A |

)

SSAO Pass

3

Compute SSAO

Translucent
Objects Tranclucent Objects: Forward Shading Pass

- I

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 22/23

Local Reflections in SS — Rendering Pipeline]

Korsuhe Insttute o Technology
Opaque Geometry Pass
Objects {aJ

G-Buffer Lighting Pass [FinalPass |
l Position }——»{ Transformation }——»{ Depth 1\
: 5| Diffuse Lighting |—1—>{
l Normal }——»{ Transformation }——»{ View-Space Normal |
Lighting com
; pose
Diffuse }——»{ Diffuse Color | (L= &
oG Post-Process
Spceoclﬁlrar }—--—){ Specular Color } sl Specular Lighting ————»{
Specular 1
= }——»{ Specular Exponent [—
A |

SSAO Pass

3

Compute SSAO

Local Reflections Pass

Translucent
Objects

Bl Compute Reflections

Tranclucent Objects: Forward Shading Pass

= |

-

11. Februar 2014

Sebastian Lehmann — Deferred Shading & Screen Space Effects

22/23

Local Reflections in SS — Demo ﬂ(“

Demo

Sebastian Lehmann — Deferred Shading & Screen Space Effects 11. Februar 2014 23/23

