Routing - Was ist das eigentlich?

Frederic Jaeckel

June 26, 2009

Routing - der Blob

- 1 Dinge die man wissen sollte
- 2 Routing der Blob
- 3 Anwendungsgebiete
- 4 Heimrouter
- 5 Fazit

Anwendungsgebiete

Dinge die man wissen sollte:

Dinge die man wissen sollte:

■ Grundlagenwissen in IP basierenden Netzwerken

Dinge die man wissen sollte:

- Grundlagenwissen in IP basierenden Netzwerken
- Wie sah Routing in der Vergangenheit aus

IP basierende Netzwerke

■ Es gibt IPv4 und IPv6 Netze.

Anwendungsgebiete

Fazit

IP basierende Netzwerke

- Es gibt IPv4 und IPv6 Netze.
- Netze haben definierte Laengen.

IP basierende Netzwerke

- Es gibt IPv4 und IPv6 Netze.
- Netze haben definierte Laengen.
- Die Länge eines Netzes wird durch den Präfix bestimmt.

IP basierende Netzwerke

- Es gibt IPv4 und IPv6 Netze.
- Netze haben definierte Laengen.
- Die Länge eines Netzes wird durch den Präfix bestimmt.
- Heutzutage nutzt man CIDR (Classless InterDomain Routing).

Anwendungsgebiete

Hä, wasn nen Präfix?

Outline

Nicht so komplex wie er aussieht!

Hä, wasn nen Präfix?

Outline

Nicht so komplex wie er aussieht!

Wie sieht denn ein Präfix aus

■ Kleinste Grösse ist /32 (1 mögliche Adresse) und grösste Grösse ist /1 (2147483646 mögliche Adressen). (in IPv4)

Routing - der Blob

Hä, wasn nen Präfix?

Outline

Nicht so komplex wie er aussieht!

Wie sieht denn ein Präfix aus

■ Kleinste Grösse ist /32 (1 mögliche Adresse) und grösste Grösse ist /1 (2147483646 mögliche Adressen). (in IPv4)

Routing - der Blob

■ Kleinste Grösse ist /128 (1 mögliche Adresse) und grösste Grösse ist /1 (VIEL zu viele Adressen). (in IPv6)

Anwendungsgebiete

Wie benutz ich den nun?

Man kann damit Netze gross und klein machen:

Man kann damit Netze gross und klein machen:

■ 192.168.0.0/24 = 256 Adressen

Man kann damit Netze gross und klein machen:

- 192.168.0.0/24 = 256 Adressen
- Aus ein mach zwei!
- 192.168.0.0/25 und 192.168.0.128/25.

Man kann damit Netze gross und klein machen:

- 192.168.0.0/24 = 256 Adressen
- Aus ein mach zwei!
- 192.168.0.0/25 und 192.168.0.128/25.
- Jeweils nur noch 128 Adressen

Man kann damit Netze gross und klein machen:

- 192.168.0.0/24 = 256 Adressen
- Aus ein mach zwei!
- 192.168.0.0/25 und 192.168.0.128/25.
- Jeweils nur noch 128 Adressen

Wie genau?!

- Wuerde einen eigenen Vortrag fuellen.
- Hilfe: Wikipedia.de: CIDR oder Subnetting

Routing in der Vergangenheit

Nur Netzklassen (A, B, C, D, E)

- Nur Netzklassen (A, B, C, D, E)
 - \blacksquare A = /8 = 16777214 Adresssen

Routing in der Vergangenheit

- Nur Netzklassen (A, B, C, D, E)
 - A = /8 = 16777214 Adresssen
 - \blacksquare B = /16 = 65534 Adressen

- Nur Netzklassen (A, B, C, D, E)
 - A = /8 = 16777214 Adresssen
 - \blacksquare B = /16 = 65534 Adressen
 - C = /24 = 256 Adressen

Fazit

Routing in der Vergangenheit

- Nur Netzklassen (A, B, C, D, E)
 - A = /8 = 16777214 Adresssen
 - B = /16 = 65534 Adressen
 - C = /24 = 256 Adressen
 - D = Reserviert fuer Multicast

Routing in der Vergangenheit

- Nur Netzklassen (A, B, C, D, E)
 - A = /8 = 16777214 Adresssen
 - \blacksquare B = /16 = 65534 Adressen
 - C = /24 = 256 Adressen
 - D = Reserviert fuer Multicast
 - \blacksquare E = reserviert

- Nur Netzklassen (A, B, C, D, E)
 - A = /8 = 16777214 Adresssen
 - B = /16 = 65534 Adressen
 - C = /24 = 256 Adressen
 - D = Reserviert fuer Multicast
 - E = reserviert
- sehr undynamisch
- schwer zu pflegen
- Durch rasanten Wachstum sehr komplex

Outline

■ ein Computer

Was ist ein Router?

- ein Computer
- mehr als eine Netzwerkkarte

Was ist ein Router?

- ein Computer
- mehr als eine Netzwerkkarte
- kennt mehr als ein Netz

Frederic Jaeckel

Routing - Was ist das eigentlich?

Aufgaben

Outline

Weiterleiten von Paketen abhängig von der Zieladresse

Aufgaben

- Weiterleiten von Paketen abhängig von der Zieladresse
- Koppeln von Netzen

Aufgaben

- Weiterleiten von Paketen abhängig von der Zieladresse
- Koppeln von Netzen
- Verteilen von Routeninformationen

Aufgaben

- Weiterleiten von Paketen abhängig von der Zieladresse
- Koppeln von Netzen
- Verteilen von Routeninformationen
- Pflegen seiner eigenen Routingtabelle

statisches Routing

Statitistik?!

Im Grunde nichts weiter als das manuelle Pflegen der Routingtabelle.

statisches Routing

Statitistik?!

Outline

Im Grunde nichts weiter als das manuelle Pflegen der Routingtabelle.

Destination	Gateway	Flags
default	91.89.248.1	UG
10.5.23.0/25	link#19	U
10.5.23.1	f2:0b:a4:de:8a:28	UHL
10.5.23.10	f2:0b:a4:00:31:3b	UHL
91.89.248.0/22	link#2	U
loopback	127.0.0.1	UGR
localhost	127.0.0.1	UH
172.22.2.0/23	172.22.45.4	UG
172.22.4.0/24	172.22.45.4	UG
172.22.13.0/24	172.22.45.4	UG
172.22.14.128/25	172.22.45.4	UG

Anwendungsgebiete

Hostroute

- Weg von Host zu Host ueber Router
- route add -host \$targethost [gw] \$router

Hostroute

- Weg von Host zu Host ueber Router
- route add -host \$targethost [gw] \$router

Defaultroute

- Weg von Host zu allen Anderen ueber Router
- route add default [gw] \$router

Fazit

Hostroute

- Weg von Host zu Host ueber Router
- route add -host \$targethost [gw] \$router

Defaultroute

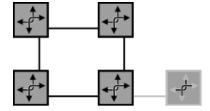
- Weg von Host zu allen Anderen ueber Router
- route add default [gw] \$router

Netzroute

- Weg von Host zu Netz ueber Router
- route add -net 23.42.0.0/16 [gw] \$router

Dynamisches Routing

■ Gegenteil von statischem Routing


Dynamisches Routing

- Gegenteil von statischem Routing
- Verschiedene Implementationen

Dynamisches Routing

- Gegenteil von statischem Routing
- Verschiedene Implementationen
 - RIP Routing Information Protocol
 - BGP Border Gateway Protocol
 - OSPF Open Shortest Path First

Anwendungsgebiete

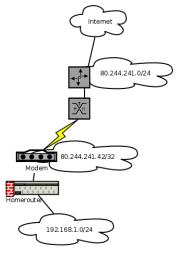
Jede Firma mit IT Infrastruktur

- Jede Firma mit IT Infrastruktur
- Internet Exchanges (DE-CIX, AMS-IX, L-IX, SwissIX...)

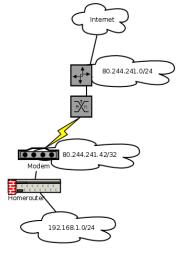
- Jede Firma mit IT Infrastruktur
- Internet Exchanges (DE-CIX, AMS-IX, L-IX, SwissIX...)
- Krankenhaeuser, Unis, Oeffentliche Einrichtungen

Fazit

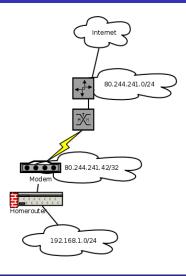
- Jede Firma mit IT Infrastruktur
- Internet Exchanges (DE-CIX, AMS-IX, L-IX, SwissIX...)
- Krankenhaeuser, Unis, Oeffentliche Einrichtungen
- "Handys", DSL Anschluesse



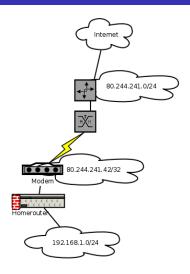
- Jede Firma mit IT Infrastruktur
- Internet Exchanges (DE-CIX, AMS-IX, L-IX, SwissIX...)


Routing - der Blob

- Krankenhaeuser, Unis, Oeffentliche Einrichtungen
- "Handys", DSL Anschluesse
- Filtern von boesen Seiten



Dynamic IP bei ADSL


- Dynamic IP bei ADSL
- NAT

"Aber auf der Verpackung steht doch Router!"

- Dynamic IP bei ADSL
- NAT
- Application Layer Gateway

"Aber auf der Verpackung steht doch Router!"

- Dynamic IP bei ADSL
- NAT
- Application Layer Gateway
 - Proxy
 - DHCP
 - DNS
 - ..

Bitte hinterlasst Feedback auf den angegebenen Adressen

Quellen: /dev/brain

Kontakt: jchome@jc-ix.net, jchome@jabber.eof.name

Am Sonntag gibts noch einen Vortrag von mir zum Thema

dynamisches Routing und dem dn42(.net)!

