GSM

Chair in Communication Systems Department of Applied Sciences University of Freiburg 2011

Albert-Ludwigs-Universität Freiburg

Dennis Wehrle, Konrad Meier

Overview

FREIBURG

- 1. GSM Infrastructure
- 2. Analysis of GSM
- 3. Our own GSM network
- 4. Security
 - 4.1 Localization
 - 4.2 IMSI-Catcher
 - 4.3 Encryption A5/1

1. GSM Infrastructure

- GSM is a cellular network
- Largest mobile network world wide
- Subscriber view:
 - Mobile Station
 - Cell phone
 - SIM card
 - Base Station Transceiver (BTS)
 - Provides access to the network over the air interface
 - Different frequency bands
 GSM 850, EGSM 900, DCS 1800, PCS 1900

<u>[]</u>#

1. GSM Infrastructure

Operator / Network view

25.07.11

GSM Research

4

IBURG

ш

Overview

- 1. GSM Infrastructure
- 2. Analysis of GSM
- 3. Our own GSM network
- 4. Security
 - 4.1 Localization
 - 4.2 IMSI-Catcher
 - 4.3 Encryption A5/1

2. GSM Analysis

- Analysis from the subscriber point of view
 - Nokia 3310
 - Netmonitor to show network parameters and cell phone state
 - Gammu^[1] captures data received and transmitted by the phone.
 - USRP^[2]
 - Flexible software radio
 - GSM signals can be captured.
 - Data processing is done with airprobe.^[3]
 - [1] Gammu: http://wammu.eu/gammu/
 - [2] USRP from Ettus Research: http://www.ettus.com
 - [3] airprobe: https://svn.berlin.ccc.de/projects/airprobe/

GSM Research

Ettus

2. GSM Analysis

 Gammu output displayed with Wireshark

[JIMSI (gsm_a.imsi), 7 bytes Packets: 137 Displayed: 137 Marked: 0 Pr											Profile: Default	
BCD Digits: 2620/39/8408619												
1 = Odd/even indication: Odd number of identity digits (1)												
0010: Identity Digit 1: 2												
Length: 8												
🗆 🗉 Mob	ile Id	entity -	Mobile Ident	ity 1	- IMS	I (2620	07397	8408619))			
0	0	= Char	nnel 2: Any c	hannel	(0)				-			
	.00	= Char	nnel 1: Any c	hanne l	(0)							
Channel Needed												
Page Mode												
DTAP Radio Resources Management Message Type: Paging Request Type 1 (0x21)												
Protocol Discriminator: Radio Resources Management messages												
GSM A-1/F DIAP - Paging Request type 1												
GSM Um Intertace												
Frame 20 (23 bytes on wire, 23 bytes captured)												
32	õ	BTS	Broadcast	GSM	Um	(DTAP)	(RR)	Paging	Request	Type 1		
30	0	BTS BTS	Broadcast	GSM	UMI	(DTAP)	(RR)	Paging	Request	Type 1		
29	0	BTS	Broadcast	GSM	Um	(DTAP)	(RR)	Paging	Request	Type 1		
28	0	BTS	Broadcast	GSM	Um	(DTAP)	(RR)	Paging	Request	туре 1		
27	0	BTS	Broadcast	GSM	Um	(DTAP)	(RR)	Paging	Request	туре 1		
26	0	BTS	Broadcast	GSM	Um							
25	ŏ	BTS	Broadcast	GSM	Um	(0.747)	Cisicy	System	2		PC /	
23	ŏ	BTS	Broadcast	GSM	Um	(DTAP)	(RR)	System	Informat	tion TV	ne 4	
22	0	BIS	Broadcast	GSM	Um	(DTAP)	(RR)	Paging	Request	Type 1		
21	0	BTS	Broadcast	GSM	Um	(DTAP)	(RR)	Paging	Request	Type 1		
20	0	BTS	Broadcast	GSM	Um	(DTAP)	(RR)	Paging	Request	Туре 1		
19	0	BTS	Broadcast	GSM	Um	(DTAP)	(RR)	Paging	Request	Type 1		
18	ŏ	BTS	Broadcast	GSM	Um	(DTAP)	(RR)	Paging	Request	Type 1		
17	ŏ	BTS	Broadcast	GSM	Um	(DTAP)	(RR)	Paging	Request	Type 1		
NO	Time	Source	Destination	PTOLOC		Inio						

paging request with IMSI

cell parameters

neighborhood list

L ...

GSM Research

0

ZW

2. GSM Analysis

FREIBURG

- Analysis from the provider point of view
 - Access to a real-world GSM network is hard to get.
 - Therefore we have set up our own GSM network called RZ-GSM.
 - Research network for:
 - "Playing" with the GSM topic in a meaningful way
 - Statistics about user behavior within the network
 - Positioning of Mobile Station
 - GSM encryption A5/1
 - What information can/will be gathered by the provider?
 - How to protect the user in a GSM network?

Overview

- 1. GSM Infrastructure
- 2. Analysis of GSM
- 3. Our own GSM network
- 4. Security
 - 4.1 Localization
 - 4.2 IMSI-Catcher
 - 4.3 Encryption A5/1

3. Our own GSM network

- GSM network: RZ-GSM
 - Software:
 - OpenBSC^[1]:

Open-Source software implementation of a GSM Base Station Controller

- LCR^[2]
- Asterisk^[3]

Voice communication server for routing the calls

- Hardware
 - ip.access NanoBTS
 - Small GSM picocell

[1] OpenBSC: http://openbsc.osmocom.org

[2] LCR: http://www.linux-call-router.de/

[3] Asterisk: http://www.asterisk.org/

ip.access nanoBTS

GSM Research

3. Our own GSM network

GSM network: RZ-GSM

Some facts: 3 BTS 1 BSC MSC => Asterisk Databases => SQL

Connection to:

- SIP
- ISDN
- mobile networks
- fixed networks

BURG

25.07.11

3. Our own GSM network

Measuring the received signal strength

Can we use this data to calculate the position of a subscriber?

- How precise is it?
- Comparison of different approaches
- Ongoing research

BUR

3. Our own GSM network

Statistics about the network
 1.2.2011 to 9.3.2011

number of calls, SMS and location updates

3. Our own GSM network

Statistics about the network 1.2.2011 to 9.3.2011

subscribers without Germany

UNI FREIBURG

GSM Research

Overview

UNI FREIBURG

- 1. GSM Infrastructure
- 2. Analysis of GSM
- 3. Our own GSM network
- 4. Security
 - 4.1 Localization
 - 4.2 IMSI-Catcher
 - 4.3 Encryption A5/1

4. Security on GSM

- Original intention:
 - Anonymization of subscribers (usage of temporary identifier TMSI)
 - Prevention of eavesdropping (encryption)
- Through the lack of computing power and suitable hardware for analysis, GSM was "secure" for a long time.
- But by now there exists several hardware components and software projects that can be used to analyze, crack and build up GSM networks.

4. Security on GSM

Problems:

- No physical access needed for attackers (e.g. cable-based communication)
- Radio waves spread with less/no control.
- Much information is not encrypted during transmission.

4.1 Localization in GSM

- Why is it necessary to know the position?
 - Subscribers are moving
 - The network has to know approximate position in order to deliver calls or SMS.
 - Security reasons
 - In case of emergency / prosecution
 - Charging / Services
 - Use the position for charging different fees (e.g. home zone)
 - Information-based
 - Where is the next restaurant?
 - Position-based
 - Business aspects (tracking cargo)

口题

4.1 Localization in GSM

- Accuracy: Depends on the density of the network
 - City: up to a few (hundred) meters
 - Rural area: up to several kilometers
 - Improvement: Combination with GPS
- How does it work?
 - Depends on the service provider
 - HLR lookup of the last known position
 - Active lookup by sending silent SMS to get the current position
- Problem:
 - Misuse of the data
 - It is not clear what happens with the data:
 - e.g.: The Austria provider A1 sells anonymized data

4.1 Example: Localization in GSM

Overview

UNI FREIBURG

- 1. GSM Infrastructure
- 2. Analysis of GSM
- 3. Our own GSM network
- 4. Security
 - 4.1 Localization
 - 4.2 IMSI-Catcher
 - 4.3 Encryption A5/1

4.2 IMSI-Catcher

- IMSI:
 - Worldwide unique identifier for the SIM
 - Stored on the SIM
- IMEI:
 - Worldwide unique identifier for the Mobile Station
- IMSI-Catcher:
 - May only be used by public authorities (in Germany)
 - Price is really high (> \$100 000 Rohde & Schwarz)
 - But with USRP you can build a cheap one (~ \$1500).
- Problems:
 - Identity of the user can be revealed
 - Record conversation
 - Produce a moving profile

0

4.2 IMSI-Catcher

- How does it work?
 - Simulates a base station as part of a regular mobile radio network (in Germany: D1, D2, E-Plus, O2)
 - During the login procedure the Mobile Station transmits the IMSI / IMEI.
- This is successful because GSM doesn't provide mutual authentication. Only the Mobile Stations have to authenticate correctly.

4.2 IMSI-Catcher

25.07.11

4.2 Login to IMSI-Catcher

- How to induce the Mobile Station to switch to the IMSI-Catcher?
- Mobile Station:
 - Stores the last used frequency on SIM.
 - Don't scan the whole frequency-band if it has a connection.
 - Try to stay in the formerly used network.
 - Use the neighborhood list to scan for proper BTS.
- Problem:
 - If the IMSI-Catcher isn't on the neighborhood list, it will not be recognized.
- Solutions:
 - Force the Mobile Station to switch to the IMSI-Catcher.
 - Use a GSM-Jammer to induce the Mobile Station to rescan the frequency-band

2

Forcing the Mobile Station to switch to the IMSI-Catcher: $\mathbf{5}$

- 1. Mobile Station listens to BTS1
 - BTS1: Transmits list of neighbors
- 2. Neighborhood-Measurement
- 3. Turn IMSI-Catcher on
 - Fake BTS4, which has the worst receiving signal strength.
 - MS believes that the signal strength of BTS4 is now better than the signal strength of BTS1.
- 4. MS switch to IMSI-Catcher.

4.2 Protection against IMSI-Catchers

- "Catching" IMSI:
 - No protection against catching the IMSI
 - Mobile phone can not differentiate between the "visible" radio cells
- Normally the user should be notified of the use of an unencrypted network.
 But:
 - Modern devices do not display if the connection is secure or not.
 - Notification about unencrypted connections can be disabled via a flag on the SIM card.
- Solution: Use cryptographic enabled mobile phones with an end-to-end encryption.

BUR

4.2 Protection against IMSI-Catchers

- Is it sufficient to use UMTS Mobile Stations for protection? No!:
 - A fall-back-to-GSM-function exists if there is no surrounding UMTS network available.
 => UMTS-Jammer
 - It is theoretically possible to build a UMTS-IMSI-Catcher

BUR

NR

Overview

UNI FREIBURG

- 1. GSM Infrastructure
- 2. Analysis of GSM
- 3. Our own GSM network
- 4. Security
 - 4.1 Localization
 - 4.2 IMSI-Catcher
 - 4.3 Encryption A5/1

4.3 Encryption A5/1

- UNI FREIBURG
- Content of the communication is encrypted (speech data, SMS)
- Three GSM encryption standards:
 - A5/0: no encryption. Should not be used.
 - A5/1: "strongest" encryption. Currently used.
 - A5/2: weak encryption. No longer used.
- Encryption Algorithm A5/1 developed in 1987
 - Only 64 Bit Key
 - Security by Obscurity
 - General Design leaked in 1994, fully reverse engineered in 1999

4.3 Encryption A5/1

 Session key K_c is calculated from private key K_i and random number RAND

4.3 Encryption A5/1

Problem:

- Algorithm is too old and not longer save.
- Key space can be reduced
- With today's computing power the encryption can be broken in seconds by using rainbow tables.
- Interception of GSM signals is no longer a problem.
 - USRP
 - Motorola C123 with OsmocomBB^[1]

Motorola C123

4.3 Encryption A 5/1

- Rainbow Tables
 - Size 1.7 TB
 - Calculated with ATI graphic cards.
 - Available on the Internet via bittorrent.
- Attack is based on known plaintext
 - Some signaling messages are known both unencrypted and encrypted.
 - Session key K_c can be calculated in seconds.
 - Private key K_i can not be calculated with this attack. But this is not necessary to decode the encrypted data.

- GSM encryption is no longer secure
- BUT: More and more devices are using GSM to transmit data.
 - Mobile TAN for online banking: TAN transmitted via SMS
 - Vending machines: Information about the fill level
 - Railway GSM: Information about the status of the train
 - Smart meter: Information about the electricity consumption
- Is this really a good idea?

GSM Research

M