
1

Concepts and Tooling for Reverse Engineering

Florian Magin <fmagin@ernw.de>

2

whoami

o Security Researcher at ERNW Research
GmbH from Heidelberg, Germany

o Organizer of the Wizards of Dos CTF team
from Darmstadt, Germany

o Reach me via:

o Twitter: @0x464D

o Email: fmagin@ernw.de

3

Who we are

o Germany-based ERNW GmbH

o Blog: www.insinuator.net

o Conference: www.troopers.de

44

Agenda

o How to extract meaning from a bunch of bytes

o With a focus on what happens if the bytes contain executable code for
a Linux like system

5

Bunch of Bytes

o Find Patterns

o The human brain is really good at that

o Throw some byte sequences into a search
machine

o Contextualize

o In most cases you know the rough context

o Just call ‘file’ or ‘binwalk’ on it

o Find a good enough parser

o If there is none, generate your own

o More on that later
https://github.com/ReFirmLabs/binwalk

https://github.com/ReFirmLabs/binwalk

6

First Steps

o If it’s in a typical executable format

o You are lucky

o Plenty of parsers and support

o Most information already available

o If it’s firmware

o Manual work required

7

Firmware Information

o Determine the Architecture

o Datasheet

o Heuristics like grepping for function
prologues/epilogues for various CPUs/CCs

o Determine Memory Layout

o Datasheet

o Memory Dump

88

Basics

o Using common Linux tooling and internals

9

Executable Parsing

o ELF: Executable and Linking Format

o PE/MZ

o Mach-0

o Header contains all the information for the loader
to setup the program
o Memory layout

o Entry point

o Dependencies

o etc

o Relevant:
o External Library and Function names

o Symbol Table if available

10

Executable Parsing: Tools

o Many overlapping tools

o ‘objdump’ if you want to get a first look

o Other tools will take care of this for you

https://sourceware.org/binutils/

https://sourceware.org/binutils/

11

Tracing

o Running the program and collecting information

o Called Library Functions (with Arguments!) with ‘ltrace’

o Systemcalls (Files opened) with ‘strace’

o Examples:

o Binary deobfuscates some hostname and connects to it, so check for
the ‘connect’ systemcalls

o If some application just hangs the last syscall or library call might give
you a hint

12

Basic Runtime Influence: GDB

o GDB: GNU Debugger

o Great for working with debugging symbols

o Painful without them

o Can be enough for basic tasks on its own

o Stop execution at certain addresses

o Inspect registers and memory

o Plugins that help with analysis

o https://github.com/longld/peda

o https://github.com/pwndbg/pwndbg

o https://github.com/hugsy/gef

https://www.gnu.org/software/gdb/

Source: https://www.gnu.org/software/gdb/mascot/

https://github.com/longld/peda
https://github.com/pwndbg/pwndbg
https://github.com/hugsy/gef
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/mascot/

13

Vanilla GDB vs Plugins

14

o LD_PRELOAD Functionality
o Load your libraries before the

specified ones

o Those Functions get called instead of
the intended ones
o Replace “getRandomNumber” with

“rand”
o gcc -shared -fPIC unrandom.c -o

unrandom.so
o LD_PRELOAD=$PWD/unrandom.so

./binary

o No more randomness!

Basic Runtime Influence

Source: https://xkcd.com/221/

https://xkcd.com/221/

1515

Intermediate

o Going deeper

o How do some tools work internally?

o Running non cooperative binaries in a controlled environment

o Specialized Tools

16

o Map from bytes to an
instruction

[0x83, 0xc0,0x01] -> “add eax,1”

Concept: Disassembly and Lifting

17

o Map from bytes to an
instruction

o Or lift to some other language
that makes the semantics
explicit

[0x83, 0xc0,0x01] -> “add eax,1”

add dstreg, immediate

dstreg += immediate

Concept: Disassembly and Lifting

18

Tool: Capstone

o Disassembly Framework

o Python (and other bindings)

o Many (FOSS) tools use it in the background
somewhere

o Same project provides Keystone for assembly

https://www.capstone-engine.org/

Source: http://www.capstone-engine.org/logo/

https://www.capstone-engine.org/
http://www.capstone-engine.org/logo/

19

o How do we or the tools know
what part of the binary is code?

o ELF Information

o Entrypoint

o Possibly symbols

00000000: eb01 b848 ...H

00000004: c7c0 3905 ..9.

00000008: 0000 48c7 ..H.

0000000c: c37f 1d00

00000010: 00ff d0 ...

Disassembly Algorithms

20

o Linear Sweep

o Easy to implement

o Might yield confusing results

o On architectures like x86 with
variable instruction lengths
and no forced alignment

eb01: jmp 3

b848c7c039: mov eax, 0x39c0c748

05000048c7: add eax, 0xc7480000

c3: ret

7f1d: jg 0x1f

0000: add byte [rax], al

ffd0: call rax

Disassembly Algorithms

21

o Recursive Descent
Disassembly

o Requires some semantic
understanding

o More accurate

eb01: jmp 3

b8: db 0xb8

48c7c039050000: mov rax, 1337

48c7c37f100000: mov rbx, 4223

ffd0: call rax

Disassembly Algorithms

22

Control Flow Graph Generation

o Graph of the possible control flows through
the program

o Tradeoffs between accuracy and tractability

o Highly useful, it’s easy to get lost in
disassembly

o Every good graphical disassembler should
have this somewhere

23

Executable Parsing: Continued

o You might want to build something that needs
this

o Sure, you could just use objdump and grep

o Small pure python library for ELF parsing:
‘pyelftools’

o If you want something more fancy: ‘lief'

25

o Observing and manipulating at
runtime

Execution Machine (CPU)

Kernel

Environment(Filesystem/Libraries)

Target Process

Dynamic Analysis

26

o Everything below some level of
abstraction is emulated

o Level of Abstraction => Kind of
emulation

Emulation

Execution Machine (CPU)

Kernel

Environment(Filesystem/Libraries)

Target Process

27

Emulation

Machine

Kernel

Libraries/Filesystem

Target Binary

Machine

Kernel

Libraries/Filesystem

Target Binary

Machine

Kernel

Libraries/Filesystem

Target Binary

Plain QEMU
User mode

Chrooting into
System Image with
QEMU as Interpreter

QEMU
System
Mode

28

Emulation

o We are always at least in control of the execution machine

o But we are slower than the real one

o Redefine instructions

o Up is down, down is up, “inc reg” now decrements the register

o Add custom code to the emulation logic

o Callback on every {jump, call, syscall} for analysis

o Fully emulating the environment might hard

o Example: Windows API

29

Tool: QEMU

o Supports a lot of architectures

o Used for device emulation in KVM/Xen

o Decently fast

o JITs and caches basic blocks

https://www.qemu.org/

Source: https://wiki.qemu.org/Logo

https://www.qemu.org/
https://wiki.qemu.org/Logo

30

Tool: Unicorn

o Lightweight emulator

o Just the CPU emulation core of QEMU

o No device emulation

o No syscalls

o Library

o Use as the backend in some other tool

o Emulate small code snippets

https://www.unicorn-engine.org/

Source: https://www.unicorn-engine.org/images/unicorn.png

https://www.unicorn-engine.org/
https://www.unicorn-engine.org/images/unicorn.png

31

Tools: Misc

o pyrebox

o IPython shell for introspection and
instrumentation of (mainly Windows) guests

o Main Focus: Malware Analysis

o https://github.com/Cisco-Talos/pyrebox

o panda2

o Full system tracing and analysis based on
QEMU

o https://github.com/panda-re/panda

https://github.com/Cisco-Talos/pyrebox
https://github.com/panda-re/panda

32

o Rewrite the target code at
runtime

o Remove code

o Add analysis code

o Hook functions

Dynamic Binary Instrumentation

Execution Machine (CPU)

Kernel

Environment(Filesystem/Libraries)

Target Process

33

Execution
Machine (CPU)

Target
Environment

Instrumentation

Framework
Target Process

Some Dynamic Binary Instrumentation
Approaches

Execution Machine (CPU)

Target Environment

Instrumentation

Framework

Target Process

Framework runs a provided Binary.
Example: DynamoRIO

Framework is loaded
into an existing process.
Example: Frida

34

Dynamic Binary Instrumentation: Basic Idea
BB1

inc eax
jmp BB2

BB2
xor [edx], eax

jmp BB3

BB3
ret

BB1
inc eax

jmp core

BB2
xor [edx],

eax
jmp core

Instrumentation
Core

Per BB:
Parse next BB

Patch BB
Exec Block

Fig 1: Typical
Execution
Flow

Fig 2: Execution Flow under
Dynamic Instrumentation

35

Dynamic Binary Instrumentation: Use Cases

o Hook functions

o Library call and System Calling Tracing

o Tracing of any function call

o Basic Block Tracing for Coverage (Fuzzing)

o Change return values

o Example

o Static Crypto Key Generation is obfuscated?

o Just hook the call where it is used

36

Tool: Frida

o Dynamic instrumentation toolkit

o Scriptable

o Multi-platform and multi-arch

o Windows/Mac/Linux/Android/iOS/QNX – i386/AMD64/ARM/ARM64

o Bindings for Python, .NET, C and Node.js

o But the actual scripts have to be written in Javascript…

o Very easy to Hook functions

https://www.frida.re/

Source: https://www.frida.re/img/logotype.svg

https://www.frida.re/
https://www.frida.re/img/logotype.svg

37

Frida Architecture

https://www.coresecurity.com/system/files/publications/2016/10/Getting%20fun%20with%20Frida-Ekoparty-21-10-2016.pdf

https://www.coresecurity.com/system/files/publications/2016/10/Getting fun with Frida-Ekoparty-21-10-2016.pdf

38

DBI: Misc

o DynamoRIO

o More mature

o FOSS (BSD)

o Intel PIN

o More mature

o Proprietary, but free as in beer

3939

Advanced

o Formalizing

o Automation

40

Binary or Program Analysis

o The subfield of computer science dealing with
automated analysis

o Massive improvements over the last years

o Mainly due to the DARPA CGC

41

Symbolic Execution

If (buffer[0:2]
== 0x1337)

Switch
buffer[2:4]

Handle
Packet Type 1

Handle
Packet Type 2

Handle
Packet Type 3

exit

42

Tool: angr

o Binary Analysis Framework

o Lifting to VEX IR

o Emulation

o Symbolic Execution

o CFG Generation

o Used in the DARPA CGC by Shellphish , won
3rd place

o Best used from an interactive IPython Shell

o Build tools upon or integrate into others

https://github.com/angr/angr

Source: http://angr.io/img/angry_face.png

https://github.com/angr/angr
http://angr.io/img/angry_face.png

43

Conclusion

o The right mature tooling makes your life a lot easier

o Initial learning overhead tends to be worth it

o Combine tooling to solve new problems

o Integrate new tooling into your existing tooling

44

www.ernw.de

www.insinuator.net

Probably out of time?

Option 1: Q&A

Option 2: Misc

fmagin@ernw.de

@0x464D

https://www.ernw.de/
https://www.insinuator.net/

4545

Misc

46

CPU Features

o CPUs sometimes provide advanced features

o Hardware Watchpoints

o Hard to detect

o Break on data read/write and not just code

o Intel PT

o Trace execution with your CPU

47

Tool: rr

o Extension to GDB that allows recording a
trace and debugging it

o Run or step the program in reverse

https://rr-project.org/

https://rr-project.org/

48

Concept: Parser Generation

o Unknown File Format

o $proprietary protocol or file format

o Some patterns might be obvious

o Others can be derived from looking at an
existing Parser

o Problem: Support for custom tools

o Parser for Visualization

o Parser/Serializer for Custom Client

o Language Aware Fuzzer

49

Theory: Formal Languages

o Every protocol or file format is basically a
formal language

o Every formal language is induced by a
grammar

o More than one even

o You can generate a parser for the language
from the grammar

o Theoretically

o But for every sane protocol this should work

Recursively
enumerable

Context-
sensitive

Context-free

Regular

50

Kaitai Struct

o Generates parser in many languages from a
spec

o Compiles to

o C++/STL

o Python, Ruby, Perl

o Javascript

o C#, Java

o Lua

o Others

Source: http://kaitai.io/img/kaitai_16x_dark.png

http://kaitai.io/img/kaitai_16x_dark.png

51

Parse Trees

Packet

Header

Type

u4be

Length

u4be

Body

Content

Array of
bytes[length-

8)

Command Body

Length

u4be

Array of
Commands[Length]

Command

…

Command

…

Command

…

52

Kaitai Struct Use Cases

o Binary protocols over HTTP that you are intercepting with
‘mitmproxy’

o Wireshark Dissectors

o Burp Plugins

