

### Inhalt

Aufbau eines Chips

Bisherige Angriffe

Gegenmassnahmen

Neue Angriffe



#### Horizontaler Aufbau

- Bond- / Testpads
- Memory
  - ROM/FLASH
- Analoge Parts
  - RF / Spannungsversorgung
- Digitale Teile
  - Protokoll
  - Krypto



### Vertikaler Aufbau



### Transistoren



# Layers

Layer



Cover Layer (M5)

Interconnection Layer (M2-M4)







Logic Layer (M1)





Transistor Layer

### Reversing propritaere HW

- Schichtweises Polieren
- Bilder machen
- Gates erkennen + Funktionen ermitteln
- Verbindungen tracen
- Krypto finden





# **Probing**

- Freilegen des Chips
  - Aetzen, Fraesen
- Entfernen der Passivierung
  - Laser, Scratching, FIB
- Probing
  - Auslesen des Speicherinhalts
  - Ueberpruefen von
    Ergebnissen des reverse
    engineering



# Probing



### Gegenmassnahmen

- Smartcards statt propritaere Krypto
- Shields
- Meshes
- verlegen der Datenleitungen
  - in tiefere Layer
  - unter Powerleitungen
- Sensoren

### Meshes / Shields

- Shield: passiv
  - Sichtschutz
  - Verhindert Fuse Reset



- Mesh: aktiv
  - Verhindert Probing



#### Sensoren

- Licht
  - UV, Laser
- Strom (brownout)
- Temperatur
- Taktrate
- Elektrische Aufladung (FIB)

#### Focused Ion Beam FTW

- Abtragen von Chipmaterial
- Abscheiden von leitendem und isolierendem Material
- Spotsize ~10nm

- Durchtrennen von Leitern
- Schaffen neuer Verbindungen
- Kontaktieren tieferer Layer



### Gegenmassnahmen

- Shields
- Meshes
- verlegen der Datenleitungen
  - in tiefere Layer
  - unter Powerleitungen
- Sensoren
- => die Rueckseite

# Praeparierung

 Fraesen des Gehaeuses und des Siliziumsubstrats

 Grossflaechiges FIB-Aetzen

Gezieltes FIB-Aetzen



#### Bilder durch die Rueckseite

- Silizium fuer
  Wellenlaengen >
  1100nm transparent
- Illuminieren mit IR
- Detektion mit IR-Kamera
- Kein Schleifen
- Geringe Aufloesung



#### **Fuses**

- Floating Gate Transistoren
- Trennen oder Verbinden von source und drain
- Aufladen des Gates







# Backside probing

- Keine Meshes / Shields
- Datenleitungen in M1 / M2
- Selbst Transistoren direkt kontaktierbar



# E-beam probing

- Signale aus Metal1 "sichtbar" an der Rueckseite
  - Capacitive coupled voltage contrast
- Spotsize Transistorgroesse





# Laser Voltage Probing

- Bestrahlen mit IR Laser
- Signale des Chips werden auf reflektiertes Licht aufmoduliert

- Auslesen von Speicher
  - Laserinduzierte Schwankung der Versorgungsspannung



# **Optical Side channel**

- Schaltende Transistoren senden Licht aus (hot carrier luminiszenz, grosses elektrisches Feld)
- Geringe Anzahl von Photonen
  - erhoehung der kinetischen Energie (Spannung)
  - Duenneres Substrat
  - Integration des Signals
  - IR Detektoren
- CCD (grosse Flaeche, geringe Framerate)
- Single photon detectors (Einzeltransistorendetektion, 10ps Aufloesung)

#### Video

 Hier haette jetzt ein Video kommen koennen, wenn ich nicht zu bloed gewesen waere ein Video in Powerpoint zu integrieren. :P

# **Optical Side Channel**





# Optical fault injection

- Toggeln von Einzeltransistoren (Logic oder Speicher)
  - Bit-Flips in SRAM-Zellen (AES)
  - Clock glitching

- How the fuck does it work?
  - Fokusierter Laserstrahl
  - 1064 nm
  - Hohe Energie ca. 1 W

