
Computer Graphics
Part I

entropia/CCC Karlsruhe

Two Parts

today:

I Color Perception

I Pixels

I Fractals

I Geometry and Material

I Rendering

Two Parts

next time:

I Realtime Rendering

I hardware

I wicked shit

I demos

Spectrum

Color Perception

RGB

RGB

Traditional Color
Formats

I 5+6+5 bits (RGB) = 16bit
(“HighColor”)

I 3*8 bits (RGB) = 24bit
(“TrueColor”)

I 4*8 bits (RGBA) = 32bit

Dynamic Range

defined as

I r = max
min

Dynamic Range

I human eye: 1,000,000

I computer displays: 1,000

I 24bit colors, per channel: 255

Tone Mapping

Reduce Dynamic Range while
preserving good looks

Tone Mapping

Tone Mapping

Tone Mapping

Tone Mapping

HDR Imaging

In classic Photography

I Tone Mapping by
aperture/exposure

I no intelligent/custom Tone
Mapping is possible

HDR Imaging

steps:

I acquire data from multiple LDR
photographs

I generate a single HDR image

I Tone Map this image

HDR Imaging

HDR Imaging

HDR Rendering

I use HDR colors throughout the
rendering process

I last step: Tone Map the
rendered image

requires hardware support for 16bit
floating-point textures

HDR Rendering

Pixels

pixel = “picture element”

Pixels

Pixels

Pixels

Resampling

Sampling

Bilinear Filtering

Linear Interpolation

Nearest Neighbour

Smooth Interpolation

Various Techniques

I Nearest Neighbour

I Linear

I Cubic: stitch many
f (x) = ax3 + bx2 + cx + d
together

I Optimal: sinc Filter

Nearest Neighbour

Linear Interpolation

Cubic Interpolation

Signal Processing

Treat color information as a signal:

I pixel distance = sampling rate

I use Highpass/Lowpass Filters to
access frequencies

→ JPG etc

Scaling small amounts

Downsampling

I must use more than four pixels

I perform a Lowpass Filter

I often ignored

Nearest Neighbour

Linear filtering

In Practice

I Nearest Neighbour: crappy
software (browsers, pdf viewers)

I Bilinear: Graphics Hardware

I Bicubic etc.: Image Processing

Fractals

etc.

Mandelbrot Set

omg complex

I 0 + 2i

I 1 + 0i

I 2 + 7i

i2 = −1
(3+2i)∗(1+1i) = 3+5i+2i2 = 1+5i

The Formula

zi+1 = z2
i + c (1)

where

I z0 := 0 + 0i

I c := x + yi

for every pixel:

I z → 0⇒ z ∈ M

I z →∞⇒ z /∈ M

with color

Iterated Function
System

Iterated Function
System

Iterated Function
System

Iterated Function
System

Iterated Function
System

another IFS

“Fractal Flames”

Nature

Nature

Nature

Nature

Pause?

Fractal Noise

We want a pattern that

I is “random”

I contains structure of various
sizes

I looks “natural”

blurred Noise

Next octave

Next octave

Next octave

Summing four octaves

This is called “Perlin Noise” and
everybody uses it.

Usage

I clouds

I height fields (terrain)

I wood, marble

I can be animated by using more
dimensions

More Terrain
Take a mesh of triangles and repeat:

I subdivide by cutting the edges at
their midpoints

I displace the midpoints

Midpoint
Displacement

sucks, because

Rendering

input:

I Geometry

I Material

output:

I pixels

Rendering

Geometry
Representation

I Geometric Primitives

I Voxels, Point Clouds

I Polygons

I Isosurfaces

Geometric Primitives

Spheres, Cubes, Cylinders, ...

I Sphere stored as center, radius

I Store transformations, boolean
operations

(Constructive Solid Geometry)

Geometric Primitives

CSG

Voxels

I Divide 3D space into equally
sized voxels

I Store one bit per voxel

Used in medical imaging, old (and
maybe future) games, movies

Voxels

Octree

Octree

Polygons

I Store points and connectivity

I Provides no concept of “inside”
and “outside”

Used in games, movies

Polygons

Polygons

I generally unsorted (“polygon
soup”)

I need to be triangulated for
rendering triangles.

Isosurfaces

I f : R3 → R
I visualize the surface where that

function yields some constant
value c :
f (~x) = c

Example

f is the sum of the “distances”
between ~x and two given points ~a
and ~b:
f (~x) = myDist(~x ,~a) + myDist(~x ,~b)

Example
f (~x) = myDist(~x ,~a) + myDist(~x ,~b)

Example

f (~x) = myDist(~x ,~a)−myDist(~x ,~b)

Rendering Isosurfaces

two possibilites:

I walk view rays while evaluating
f , approximate intersection

I transform into a lots of polygons

Isosurface

Appearance

I lighting

I material

Illumination

I local

I global

Material

“Material” models

I micro-geometry

I color

I light transmission

Micro-Scale
micro-scale roughness: matte surface

Diffuse Reflection

Meso-Scale
meso-scale roughness: small visible
bumps

Macro-Scale

macro-scale roughness: we have
geometry for that

Color

usually stored in one or more textures

Appearance

can vary according to

I light color

I light angle, viewing angle
(velvet)

I environment (mirror, glass)

 there can be no comprehensive
model

Offline Rendering

I static scene, no user interaction

I no hard time constraints

Realtime Rendering

I time constraint: 20msec

I a whole industry built around
clever cheating

Ray Tracing

Ray Tracing

Tracing “photons” from the light
source is also possible

Rasterization

for each object:

I project it onto the viewing plane

I paint all the pixels it covers

Painter’s Algorithm

I sort objects

I draw from back to front

Sucks

I wasteful in scenes with high
occlusion

I can’t handle intersections

I sorting is in O(n log n)

Z-Buffer Algorithm

I draw objects in any order

I for every pixel, store distance to
camera in a buffer

I paint pixel only if distance to
camera is lower

Next time

I graphics pipeline and hardware

I wicked techniques

I GPGPU, future technologies

I demos

500 GFLOPS vs. 10 GFLOPS

Questions?

This work is hereby published under the Creatice Commons Attribution
License. It is also published under the GNU FDL and LGPL. Since i am
not able to release anything into the public domain in germany, i hereby
grant you all other imaginable rights to do with it as you wish. (this does
not apply to the works of others reproduced here, of course)
For a list of the images used in the slides and attribution information, see
the file part1-license.txt that is included in the archive that you
downloaded.
If you feel that your copyright has been violated, please contact me.

Johann ’cupe’ Korndoerfer

